Skip to contents

Renders a HTML table ready for plonking into a HTML or word document.

Usage

proc_freq(var1, data = NULL, sort = NULL, min.frq = 0)

Arguments

var1

Name of the variable

data

Dataset that contains var1

sort

Optional argument which can take on "asc" or "desc" to indicate the type of sort required.

min.frq

Minimum frequency

Value

Dataframe

Details

Renders output similar to the "proc freq" function of SAS.

Created by PV (2023).

Examples

test = iris
proc_freq(Species, test)

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

50

33.3

50

33.3

versicolor

50

33.3

100

66.7

virginica

50

33.3

150

100.0

Frequency Missing = 0

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

50

33.3

50

33.3

versicolor

50

33.3

100

66.7

virginica

50

33.3

150

100.0

Frequency Missing = 0

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

50

33.3

50

33.3

versicolor

50

33.3

100

66.7

virginica

50

33.3

150

100.0

Frequency Missing = 0

test[1:4, "Species"] <- NA proc_freq(Species, test)

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

46

31.5

46

31.5

versicolor

50

34.2

96

65.8

virginica

50

34.2

146

100.0

Frequency Missing = 4

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

46

31.5

46

31.5

versicolor

50

34.2

96

65.8

virginica

50

34.2

146

100.0

Frequency Missing = 4

Species

Species

Frequency

Percent

Cumulative Frequency

Cumulative Percent

setosa

46

31.5

46

31.5

versicolor

50

34.2

96

65.8

virginica

50

34.2

146

100.0

Frequency Missing = 4